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o8 Chapter 4  Normal Distribution

Origins of the Concept

erhaps the single most important distribution in all of statistics is the
normal distribution, Its discovery dates back to the English mathemati-
cian, Abraham De Moivre! (1733), and his work on gambling experiments and
is perhaps best illustrated with the following example.

Suppose a large number of 'well-balanced coins, say for instance 900 coins,
are dropped on a table and the number of heads counted. How mary heads would
you expect? Many people would guess approximately 450 (half of 900) and,
indeed, experience has shown that if this experiment were repeated thousands
and thousands of times, most often you would get approximately 450 heads.
However, on many occasions, you would get somewhat more than 450 heads and
on many occasions somewhat less. If we were 10 actually record the results of
these thousands and thousands of experiments into a histogram, it might appear
as follows.

Approximately
68%

Number of heads achieved
when 900 coins are dropped
thousands and thousands of
times.2

e

435 450 465 (Nutnber of heads)

~1 0 +3 (De Moivre's predictable distance,
now referred to as the standard deviation) \

In studying these results, De Moivre noted that approximately 68% of the
readings consistently fell within a predictable distance from the mean, denoted
by the symbols —1 and +1. In other words, if you dropped 900 coins on a table
and counted the number of heads, you would have a 68% probability there would
be between 435 and 465 heads. De Moivre’s predictable distance is now referred
to as the standard deviation.>”

All information relevant to the understanding of the chapter is presented on each page as
footnotes. However, certain information is presented at the end of the chapter as numbered
endnotes, since they are mostly reference sources and historical fine points that tend to
interfere with the flow of the material. It is not necessary to consult endnotes.

#De Moivre used the inflection points on the
curve as his predictable distance. Inflection
points are the points where the steep upward — .
j slope of the curve abrupily changes to a more
gradual incline. This is useful when sketching
the curve to properly estimate where the first
standard deviation lines are located.

-1 0 +1 (Standard
deviations)
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Furthermore, De Moivre noted that approximately 95% of the readings fell
within —2 and +2 predictable distances (standard deviations) of the mean, as
follows.

Approximately

Number of heads achieved
when 900 coins are dropped
thousands and thousands of

times.
e :.E‘ ;M: H'-i"“hwl-k.
420 465 480 {(Number of heads)
-2 +1 +2  {De Moivre’s predictable distance,

now referred to as the standard deviation)

De Moivre realized he had discovered something important (he spent over
12 years on it, vltimately deriving the equation for the normal distribution and
calculating probabilities associated with its use that to this day would be consid-
ered quite accurate) but for reasons* was unable to interest others.

Half a century later, the famous French mathematician, Pierre Simon La-
place was working on a probability experiment similar to that of De Moivre, only
Laplace’s experiment (1781) concerned newborn infants.’ Laplace was trying to
prove that male babies were born with a higher frequency than female babies.
Although Laplace’s work is quite complex, let’s consider the following simplified
example.

Suppose we assume the probability of a male birth is + (50%). If we equate
the probability of having a male baby to the probability of achieving a head when
a coin is tossed (which is also ), then the resulting distribution of heads
achieved when dropping 500,000 coins on a table, thousands and thousands of
times, should be equivalent to the resulting distribution of male births achieved
when 500,000 babies are born, in thousands and thousands of cities. In other
words, we would expect approximately 250,000 heads (or approximately 250,000
male births) each time. However, on many occasions we would get somewhat
more than 250,000 and on many occasions somewhat less. According to the laws
of probability, the resulting distribution should ook as follows.”

-

Number of male babies
expected in 500,000 births
if P(male birth) = /2

i

T ¥ -

249,292 249,646 250,000 250,354 250,708 Male births expected
-2 -1 0 +1 +2 Standard deviations
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As it turned out, in the years 1745-1770 in Paris, there were equivalent to
254 856 male births out of 500,000.% According to the previous histogram, the
likelihood of this occurring is almost 0. Just look at the histogram. The proba-
bility of getting over 251,000 male births is negligible. To get over 254,000
would be considered nearly impossible.

Laplace correctly reasoned that the probability of a male birth must then
be greater than 50% and more likely closer to 51% (254,856/500,000 = 51%).
Laplace substantiated these findings using birth records from other European
cities such as London and Naples, which also produced similar ratios with only
minor variation that Laplace attributed to climate, food, or custom.” To this day,
these probabilities hold true worldwide. The probability of a male birth is known
to be nearly 51%, a female birth 49%.%°

Although Laplace republished his findings in 1786, the work attracted only
minor attention, probably due to the extreme complexity of his mathematical
development. _

The next stage in this unfolding discovery had to wait an additional 30
years for the work of the famous German mathematician, Carl Gauss. Interest in
planetary motion dominated Europe in the late 1700s. Astronomers and mathe-
maticians were encouraged with national grants and contests to correctly measure
the position of certain stars and other celestial bodies, which were to be used to
determine precise longitudinal measurements for sea navigation. However, im-
perfections in telescopic lenses (along with the imperfections and variations in
the human eye) produced measurement errors that interfered with determining
exact positions. These errors and how to deal with them perplexed astronomers
for more than half a century until Carl Gauss in 1809 correctly reasoned that the
errors of observation had to be distributed much like the heads in a coin exper-
iment and thus created a minor revolution, at least in the field of astronomy.!!
Although the actual mathematics involve tri gonometric equations, the underlying
principle is quite simple. Suppose we use the following example.

Say the true position of the Moon’s crater, Manilius,!? at a certain place
and time was known to be precisely 17°20' from a known reference star. If we
were to take thousands and thousands of measurements, the average of all these
measurements might indeed be 17°20', however many measurements would be
sreater than 17°20" and many less. If we were to record alt these thousands and
thousands of measurements, the results might appear as follows.

Star
. =]
o
e Moeon crater
§ e Manilius
-
cP/ \ Thousands atd thousands
‘@@ ol — of measurements of the
A positicn of moon crater

Manilius

17°10°  17°200  17°30° Position of Manilius
-1 0 +1 Standard deviations
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Notice how the distribution takes on that familiar bell-like shape, with the
measurements symmetrical about the mean, and that approximately 68% of the
errors fall within a certain predictable distance, which we now refer to as the
standard deviation,!3

The next two decades following Gauss’s discovery were spent mostly gath-
ering large bodies of data related to measurement error and working out mathe-
matical theories associated with its use. However, outside the fields of astronomy
and probability theory, the distribution we now call normal was relatively un-
known.!* Starting in the 1830s this started to change. In fact, much of the re-
mainder of the 1800s was spent exploring applications to other fields.

By the end of the century, the normal distribution had been successfully
applied to such fields as experimental psychology (reaction times, stimuli-
sensation measurement, memory), physics (molecular motion), biology (human
height and chest measurements, size of fruit and other characteristics of plant
and animal life), and education (talent and abilities as demonstrated by exami-
nation scores). By the 1930s, statistical techniques based on the normal distri-
bution had become integral parts of the fields of biometric research, factory
production, economics, and agriculture, and was on the verge of incorporation
into numerous other fields.

Cautionary Note: One of the myths of statistics is that most natural / -
phenomenon, given enough observations, will take on a normal

distribution. This is not so. However, still to this day, some of those

trained in experimental research cling to this false belief. In fact, much

natural phenomenon is skewed, bimodal, or exhibits a variety of

distributive forms. Although some natural phenomenon can be closely

estimated with the normal distribution, the normal distribution’s

importance derives more from its use in sampling theory, where this

distribution reoccurs with uncanny repeatability, which is discussed in

section 4.4 and in chapter 5.

Because a full understanding of the normal distribution is so vital for sta-
tistical inference (that is, use of samples to estimate population characteristics)
we will spend the remainder of this chapter exploring its intricacies.

£l

idealized Normal Curve

The concept of the idealized normal curve originally stems from the writings and
mathematical methods of Laplace (1781, 1786)'% and is based on the following
underlying assumptions.

n—»oo a. The number of In other words, the number of
observations approaches  observations (n) is enormously large
infinity. (maybe millions or billions of

measurements) on the same
phenomenon.
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Ax = 0  b. The change in x The change in x refers to the width
approaches 0. of the histogram bars. To say the
width ‘‘approaches zero’’ means the
histogram bars are exceedingly
narrow. In other words, if you were
to measure adult height, the data
must be grouped in exceedingly
narrow categories. Say one
histogram bar might represent all

1_rt?

women 3’4 '’ while the next
histogram bar represents all women

5'4; "', the next 5455 '/, which are
exceedingly narrow groupings.

¢. The resulting histogram If we connect the tops of the

contains thousands of histogram bars, it would take on a
histogram bars, which smooth flowing appearance, which
form into the shape of a we refer to as the normal curve.
bell.

These conditions can be summarized pictorially as follows.

Idealized normal Idealized rormal
distribution curve

Enormous amounts of The line connecting Histogram bars are erased,

measurements on one the tops of the with only the smooth flowing
phenomenon are grouped histogram bars is frequency polygon line

into a histogram with called a frequency remaining. This is the
exceedingly narrow intervals polygon line. normal curve.

and form the shape of a bell.

Although the normal curve is somewhat of an idealized construction (it’s
rare that we can obtain millions or billions of measurements on one phenomenony},
experience has shown it to be an indispensible tool in predicting probabilities
associated with sampling. Note that the shape of the normal curve can vary
slightly; however, certain characteristics are common to all normal curves, and
these are presented next.

Characteristics of the Normal Curve

a. Bell-shaped, fading at tails. Theoretically,
the distribution continues indefinitely in
both directions, approaching but never 100%
touching the horizontal axis.
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b. The total amount of data is 100%, 50% 30%
symmetrical about the mean, (i, with 50%
of the data above the value of W, and 50%
below.

Approximately 68% of the data lies within Approximately
—1 and +1 standard deviation of the mean,
and approximately 95% of the data lies
within —2 and +2 standard deviations of
the mean,

<

-1 0 +1  (zscores)

Approximately
[ 95% >

(Recall from chapter 2, section 2.8, a 2z score Is defined as the
number of standard deviations a value is away from the
mean.)

. e
-2 = 0 41 42
{z scores)

d. The percentage of data between any two 28%
points is equal to the probability of
randomly selecting a value between those
twWo points. .

For example, if 28% of the data lies a b
between points g and b, and if you
randorly select one value from the entire
population, the probability this one value
will be between a and b is 28%.

A brief word about terminology: we will often refer to the percentage of
data in some part of the normal curve as an area. The terminology stems from
calculus and pervades much of statistical writing, including this text. Just keep
in mind, if we refer to the

Area in % of data in
some shaded  this is equivalent to  that same
interval interval

Now let’s get down to specifics. How do we obtain precise percentages
associated with the normal curve? We merely look them up in the normal curve
table in the back of the text.
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Example

Solution

Answer

Use of the Normal Curve Table

Kramp was the first to tabulate the exact probabilities associated with the normal
distribution, which appeared in 1799 in a book concerning the refraction of light.
These tables were used for about 100 years and the tables in use today are only
slight variations of the original.” Let’s see how a contemporary table works.

Although contemporary tables vary slightly in structure, our table requires
the understanding of three rules, two of which are presented below.

T} -.:.‘:(z':scgl_'e.s)' :

IR

At the upper right hand corner of the normal curve table (refer to “*Statis-
tical Tables’” in back of book, or for quick reference, see inside cover) is a
demonstration example. Let’s use it as our first example.,

Find the percentage of data (or area) from
z=0toz=1.28.

Look under the z column to 1.2, then across o
to the .08 column (notice that 1.2 + .08 = 0 128 (z scores)
1.28). Here we find the decimal .3957. To
change .3997 to a percentage, we move the

Nermat Curve Table (on back cover)

. . z 00 01 0z ... .08
decimal two places to the right .39.97, to T
AL
get 39.97%. ¢
1.2 = 3997

30.97% of the data lies between z = () and 39.97%

z = 1.28.

0 1.28 {z scores}
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Practice 2

Answer
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Solution

Answer

Practice 3

Answer
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See if you can solve the following two practice problems without looking

at the answers.

Find the % of data between z = 0 and z =
93,

32.38%. Look under the z column for .9,
then across to .03 (note: .9 + .03 = 93).

Find the percentage of data between z = 0
and z = 2.00.

47.72%. Look under the z column for 2.0,
then across to .00 (note: 2.0 + .00 = 2.00).

Find the percentage of data above z = 1.28.
Since the table reads from the middle (z =
0) out, when we look up z = 1.28, we get
the percentage of data from z = O to z =
1.28, which is 39.97%. However, this is not
the answer to our question. But, if we re-
member 50% of the data is in half the curve,
then

39.97% + 7 = 50.00%

We solve this by subtracting 39.97% from
both sides, to get

50.00% — 39.97%
= 10.03%

10.03% of the data lies above z = 1.28.

?

Find the percentage of data aboye 7 = ,93.

17.62% (50% minus 32.38%)

32.38%

93 (z scores)

2.00 (z scores)

39.97%

{Note: 50% of the
data lies in half
i, the curve)

1.28 (z scores)

10.03%
(50% — 39.97%)

1.28 (z scores)

93 {z scores)
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Practice 4 ——————— Find the percentage of data above z = 2.60.

Answer 2.28% (50% minus 47.72%). 2.28%
Remember: the two percentages (2.28% & (answer)
and 47.72%) must add up to 50%. 0 2.00 {(z scores)

The table can also be used to get the percentage of data in any ‘‘slice’” of
the normal curve,

Example -————— Find the percentage of data from z = .93
toz = 1.28.

Solution Find the percentage of data fromz = O to
1.28. Then find the percentage of data 0 93128 (zscores)
from z = 0 to z = .93, Subtract the two 4, = 39.97%
percentages to get the answer. Perhaps a _ ’\Q’F 32.38%
formuia would be helpful. :

Ashadea = Az minus 4,

= 39.97% — 32.38% 0 93128 (zscores)
= 7.59%
Answer 7.59% of the data lies between z = .93 and 7.59%
z = 1.28. 5/ (39.97% - 32.38%)
0 .93.1.28 (z scores)
&
Practice 5 ——————— Find the percentage of data from z = 1.28
to z = 2.00.
Answer 7.75% (47.72% minus 39.97%)
0 128 2.00 {zscores)
Practice 6 ——————— Find the percentage of data from z = .10 to 35.99%
z = 1.28.
Answer 35.99% (39.97% minus 3.98%)
0 .10 1.28 (z scores)
Note: To get the percentage of data for z = .10, we lock
down the z column to .1, then across to the .00 column

{1+ .00=.10)
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The third and last rule in using our normal curve table is as follows:

However, since both halves are identical, the percentage of data from, say,
z =010z = 1.28 is identical to the percentage of data fromz = Otoz = —1.28.
In other words, the percentage of data from z = 0 to z = 1.28 is 39.97% and the
percentage of data from z = 0 to z = ~1.28 is 39.97%. This is demonstrated in
the foliowing example.

Find the percentage of data between z =
—1.28 and z = +1.28.

First get the percentage of data fromz = 0

toz = +1.28 by looking up z = 1.28. This -128 0 4128 (zscores)
gives us 39.97%. Next we get the per-
centage of data from z = O to z = —1.28 PI7% ; 39.97%

by looking up z = 1.28. This also gives us
39.97%. Notice in the diagram that we must
add the two areas to get the total percentage : :

of data from z = —1.28 to z = +1.28. -l28 0 4128 (zscores)

39.97% + 35.97% = 79.94%

79.94% of the data lies betweenz = —1.28
and z = +1.28.

79.94%

-1.28 0 +1.28 {z scores)

&
Find the percentage of data between z =
—1.28 and z = +.93.
72.35% (39.97% + 32.38%)
-1.28 0 +93 (z scores)
Find the percentage of data below
z = —1.85. 3.22%
46.78%
-1.85 0 (7 scores)

Note that the percentage of data fromz = 0 to
z = —1.85is 46.78%. We then subtract this from 50% to
get the answer: 50.00% minus 46.78% = 3.22%.
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Notice that each case requires us to stop and think before using the normal
curve table. For this reason, before we attempt to solve a problem, it is best to

do the following,.

Applications: Idealized Normal Curve

Tt was widely believed in the last century that once enough data is gathered almost
all natural phenomenon will be shown to be normally distributed. Although today
we know this not to be true, we do find much in nature and life that can be closely
approximated with the idealized normal curve. Let’s use the following example
to demonstrate.

Suppose we measure the height of every male student enrolled at the Com-
munity College at Maxwell Airforce Base, Alabama,* and find the average height
to be p = 5'10"". Now, what are the chances that every male student at this
College will be 510”2 Of course, this is absurd. Although many will be in the
vicinity of 510", the bulk of the students will probably be somewhat shorter
than 5'10'' or somewhat taller. Experience has shown that if we were to represent
these height measurements in the form of a histogram, that chances are the his-
togram will build into the shape of a normal distribution and might look as

follows.T

Heights of male
students

- s
L H T
5'6" 5!811 6!2" Heights
-2 -1 0 +2 7 BCOres

* Although probably having the largest enrollment of any community college in the country
(approximately 300,000 students), the College at Maxwell Airforce Base offers no on-
campus courses. Instead, the college acts as a “‘¢learing house’’ for incoming transfer
credit from airforce personnel all over the world.

+Adolphe Quetelet (1846) was probably the first to demonstrate a population of male
heights as closely fitting a normal distribution. For data, he used the heights of 100,000
French conscripts from the early 1800s. Can you guess the average height of a French
soldier in those days? The answer is, L = 5'0", for all males. Quetelet also showed chest
measurements of nearly 6000 Scottish soldiers to be near normally distributed.
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The spread of values would depend on a number of factors,* however let’s
say for this particular population, we calculated the standard deviation to be
¢ = 2", If we fit an idealized normal curve over the data, the resulting repre-

sentation would leok as follows.

Heights of male
students

6" 5gn 10
-2 —1 0

60" 62" Heights

+1

+2  zscores

Just from knowing we have a normally distributed population with average
height p = 5'10"’ and standard deviation ¢ = 2'’, we can immediately determine

the following.

» 50% of the heights will be over 5'10",
and 50% of the heights will be under
510",

+ Approximately 68% of the heights will
be within +1 standard deviation of the
mean, —that is, approximately 68% of
the heights will be from 5’8" to 6’0",

Since the curve is symmetrical,
approximately 34% (half 68%) will be
from 5'8'' to 5' 10"’ and approximately
34% will be from 5'10"" to 6'0"'.

= Approximately 95% of the heights will
be within 2 standard deviation of the
mean, J-—that is, approximately 95% of
the heights will be from 5’6’ to 6'2"".

Since the curve is symmetrical,
approximately 474% (half of 95%)
will be from 5'6"' to 5'10"" and
approximately 474+% will be from
510" to 62",

50% 50%

510"

Approximately

58" 5'10" @'0" Heights
-1 0 +1 z scores

Approximately

f—— 95—
Approx. Approx.
4711h% 472%

56" 58" 510" 60" &2 Heights
-2 -1 4] +1 +2  zscores

*Certain normal populations have been shown to be comprised of a number of smaller
normal populations. In other words, several cultural groups in this case might mix (each
with a different average height and normal distribution) into one larger composite normal

distribution.
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Example

Solution

Normal Distribution

To determine more precise percentages, we must refer to the normal corve
table, which requires z scores to be calculated to two decimal places. For this,
we use the following formula.

Recall, a z score is the number of standard deviations a value is away from
the mean. Now let’s look at an example.

Suppose the heights of all male students at the Community College at Maxwell
Airforce Base are known to be normally distributed with p = 510" and ¢ =
2", find the percentage of male students over 60",

We proceed in four steps.

a. Draw normal curve, listing real data and
z scores for at least +2 standard
deviations.

5'6" 5'8" 5'10" 6'0" 62" Heights
-2 -1 0 +1 +2 zscores

b. Shade the area in question, in this case,
over 6’0",

56" 58" 810" 60" 62" Heights
-2 -1 0 +1 42 zscores

¢, Calculate the z score at the cutoff (6'0'"). 7 x—4 607 —-5'10"

This point is represented by the symbol, G g1
x, in the z formula. '

tsz

= +1.00
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Normal Carve Table
00 01 .02 ...

d. Now we must stop and think a moment as
to how the normal curve table can be used
to get the information we wish. If we look
up z = 1.00, we get 34.13% (.3413), but
this is not the answer. 1.0—#-3413

However, if we subtract 34.13% from
50%, we get the percentage of data in the
shaded region.

Ashaded = 50% — 34.13%
= 15.87%

Note: 34.13% plus 15.87% equals 50% (half
the curve).

. i

0 1.00 =z scores

15.87%
{answer)

15.87% of the male students registered at the
Community College at Maxwell Airforce Base 310" x=60"

0 z=100
are expected to be over 6’0", = |

Referring to the above problem: if we were to randomly select ore male student
from this Community College, what is the probability this one student would be
over 6'0"'?

Since 15.87% of the male studenis are over 6'0)'’ (according to the above
problem), then the probability of randomly selecting a male student over 6'0'’ is
15.87%. B

Again referring to the above problem: what percentage of the area under the curve
is in the shaded region?

The words, area, percentage of data, and probability, have much the same
meaning when discussing the normal curve. Thus, we can state,

Probability of
= selecting a male = 15.87%
in shaded region - |

Areaof  _ Percentage of data
shaded region  in shaded region

Using the same population, now let’s ask a different question.
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Example ————— Suppose the heights of male students at the Community College at Maxwell
Airforce Base are known to be normally distributed with [ = 510" and
G = 2'". Find the percentage of male students who are over 575,

Solution We proceed using the same four steps.

a. Draw the normal curve, listing real
data and z scores for at least 2 Heighis
standard deviations and

. Shade the area in question. T

5'6" gt 510" 60" 62" Heights
2 —1 0 +1 +2  Zscores
x=57%"

. Calculate the z score at the cutoff (in
this case, at 377+,

. Look up z = —1.25, which gives us
39.44%. However this is not the complete
answer. If we examine the diagram, we note
that this is the percentage of males from
510" to 5'74'" (that is, from z = 0 to
z = —1.25). To get the complete answex we

must add 50%, the percentage of males over
5'10". 89449 ——
(39 44% + 50%)

39.44%

Ashaded = 39.44% + 50%
= 89.44%

Answer 89.44% of the male students registered at the
Community College at Maxwell Airforce Base
are expected to be over 573"

practice 1 - ———— For the problem above, find the percentage
of male students who are 5’75 to 6'0"".

Answer T3.57% (39.44% + 34.13%)

Mote: we must lock up two %'s of data and then add the
two together.
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For the problem above, find the percentage T 43.32%

’\{?.34%

of male students who are 5’114/ to 6'1"".

15.98%
(answer)

15.98% (43.32% — 27.34%)

time we subtract. "oz =1.50

ral—

Note: Again, we must look up two %'s of data, only this 510" T
0 '
x=51T1

z

Working Backward with the Normal Curve Table

The normal curve table can also be used in reverse. That is, if we already know
the percentage of data in a certain region, we may be able to use the normal curve
table to find the z score at the cutoff.

Suppose the percentage of data in the
normal curve fromz = 010z = 718
known to be 30%. Find the missing
z score.

0 z=7 zscores

Since the table reads from z = 0 out  Ngsmal Curve Table (o back cover)

to z = ? and we already know the z L0 01 ... .04, . .
percentage of data in this region is 0 % of data
30% (.3000 in table), we merely use in zormal

. . curve starting
the table in reverse. First, we find the B 7005 fromz =0

percentage of data closest to 3000
(30%), which turns out to be .2995.
Next, we look across to the z score indicated, to get .8 and up to get .04. The z
score is z = .84. (Note: if the percentage of data falls precisely midway between
two values, we round to the higher z score.)

The missing 7 score is z = .84 (in other
words, approximately 30% of the data lies
between z = (¢ and z = .84).

0 84 Z scores
]

Find the z scores associated with the middfe 60% Middle
of the data in the normal curve.

z=—84toz = +.84

Note: We must split 80% into 30% plus 20%. When we look up
309% (closest valug Is .2995), we get 7 = — 84 and 7 = +.84. -84 0 B4  rscores
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Practice 2 —————— Find the z score associated with the upper 10%
of the data.
Answer z=+1.28

0 1.28 zscores

Note: We must look Lp 40% in the table, since the table starts
reading from z = O outward. The closest vatue to 40% {.4000) is
3997, which gives us z = 1.28 at tha cutoff.

Applications

It’s long been known by experimental psychologists that different people react

to the same stimuli in different times. For instance, an automobile driver responds

to danger by jamming on the brakes but the precise time to react will vary from

individual to individual. Similarly, the speed at which a student reacts to (or

absorbs) facts in a classroom varies from individual to individual. Gerling (1838)

was probably the first to demonstrate reaction times as normally distributed.!®
Let’s demonstrate with the following experiment.

Example —————— Suppose a researcher concerned with
measuring forms of intelligence in new-
born infants sets up an experiment (o
electronically monitor the neurological
reaction time when a tiny light is flashed
into a baby’s eye.

After testing thousands and
thousands of newborn infants, it was
found that the gverage reaction time was
i = 50 milliseconds (ms) with standard deviation ¢ = 10 ms. Assuming the
reaction times are normally distributed, below what value would you expect to
find the fastest 10% of the reaction times?

Solution This is a typical working-backward problem where the percentage of data is given
(in this case, the fastest 10% of the values), and we use the normal curve table
in reverse to determine the z score.

To start, we proceed in much the same way as solving any normal curve

problem.

a. Draw the normal curve, listing Reaction
real data and z scores for at least time
12 standard deviations.

30 40 50 60 70  milliseconds
-2 -1 0 +1 +2  z scores
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b. Shade the area in question. Since
the fastest times would be less
than 50 ms, we shade the extreme
left of the normal curve,
estimating 10%.

10%

30 40 50 60 70 milliseconds
-2 -1 0 +1 +2  zscores

¢. Next obtain the z score at the cutoff.
To do this, we look up 40% (.4000)
since the table reads data only from
the center (z = 0) out.

Note in the table that the closest > ' S z scores
value to 40% (.4000) is .3997, which
gives us a z score of z = 1,28, Since Normal Curve Table
the z value is below W, we must 5 00 01 .. 08
make the z value negative. Thus, .
z = —1.28. {
1.2 -———{[3997]

d. Now use the z formula to solve for x, the real data value at the cutoff.
Essentially we know z {—1,28), and we wish to solve for x in the formula;

Z:x———u M=50
o g = 10

x — 50
1.28 = o
(10} —1.28) = x — 50
—-128 =x — 50
372 =x

orx = 37.2 ms

This calculation required some algebraic manipulation. First, we multiplied
both sides of the equation by 10 to obtain —12.8 = x — 50, Second, we
added +5{) to both sides of the equation to get 37.2 = x. In other words, at
the cutoff, x = 37.2 ms.

Below 37.2 ms you would expect to
find the fastest 10% of the reaction
times,

Reaction
time
10%

x=372 50 milliseconds
z=-].28 0 Z 8COres
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For the preceding problem, between what two
values would you expect to find the middle
95% of the reaction times?

Between 30.4 and 69.6 ms

x =304 ms 50 x=09.0 ms

MNote: We must look up 47%“% {haif of 95%;), or in decimal form
4750, to obtain z = 1.96 on both sides. When we substitute z
= ~1.86 and z = +1.95 in our z formula, we obtain the
following:

z—X7u z:x_!"l
o G
— 50 X — 50
—195=" +1.96 =
10 10
x = 304 ms x = 89.6 ms

{To solve, multiply both sides by 10, then add 50 1o both sides.)

For the above problem, above what value would
you expect to find the slowest 70% of the reaction
times?

Above 44.8 ms

Note: 50% of the data ls above (1 = 50 ms so we must ook up the
remaining 20% {(.2000). The closest value to .2000 is .1985, which is
equivalent to z = .52, Substituting z = —.52 in our z formula, we
obtain the following:

z=-1.96 0 z=-+1.96

%— Slowest 70% —»=

x=44.8ms
z=-52

Binomial Distribution: An Introduction to Sampling

Although some natural populations have distributions that can be approximated
with the normal curve, the normal curve’s importance is derived more from its
consistent and uncanny ability to predict the outcomes when we sample from a
population. Although different “‘types’’ of populations exist {from which we may
sample), one of the most important in research is

the two-category population.




Medical Population

Many thousands of users of a
new experimental drug designed
to cure a specific form of bladder
inflammation, classified into users
who were cured and users nof
cured.

p=00%
(Percentage
of users who
were cured)

Psychological Population
Thousands of recipients of a new
drug-free therapy, classified into
those who showed improvement
and those with no improvement.

r=42%
(Percentage
of recipients
who showed
provement)

{Implies 40%}
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Educational Population
Hundreds of thousands of SAT
verbal scores recorded over the
past five years, classified into

scores 330 or less and scores
above 330.

p=15%
(Percentage of
S.A.T. verbal
scores 330

or less)

Marketing Population
Hundreds of thousands of phone
calls made to New Jersey
residents last year by the Fullins
Co. selling magazine
subscriptions, classified into calls
resulting in a sale and calls
resulting in no sale.

p=3%
(Percentage
of calls
resulting

in a sale)

Notice that we may describe such two-category populations by the letter p,
the proportion or percentage classified into one of the categories. Of course, once
we know the percentage of the population in one category, we know the per-
centage in the other, since the sum of the two percentages must add to 100%.
For instance, in the medical population, the first example above, if 60% of the
users of this experimental drug were cured, indicated by the shaded region, this
implies 40% were not cured. This 40% is representied by the unshaded region
(note: 60% + 40% = 100%).
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Examples of two-category populations are as follows.

Manufacturing Population
Millions of assenibly-line
batteries produced last month by
a farge manufacturer, classified
into batteries defective and
batteries not defective.

p=0%
(Percentage
of batteries
defective)

Gambling Population

Billions of coin flips, classified
into those resulting in heads and
those resulting in tails.

p=350%
(Percentage of coin
tosses resulting
in a head)
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In case you were wondering, it doesn’t matter which of the two categories
in a two-category population we describe by p. For instance, in the manufacturing
population, we described this population of assembly-line batteries as p = 6%
defective, however a salesman for this company might describe this exact same
population as p = 94% okay. Most often, we assign p to the particular category
we are interested in.

One last important point: every member of a two-category population must
fall into one or the other category. In other words, each battery in the manufac-
turing population must be classified as either defective or not defective. Each
user of the experimental drug must be classified as either cured or not cured.
Each telephone call in the marketing population must be classified as sale or no
sale. There can be no borderline cases. Each member of the population uniquely
fits into one or the other category.

Sampling from a Two-Category Population

Once we determine we have a two-category population and describe this popu-
lation by p (the percentage of values in one category), then we may wish to know
what we can expect when we sample from such a population.

Since the methodology for determining such sampling evolved from early
gambling experiments, usually involving the tossing of coins or dice, we offer
the following.*

Suppose we have the following two-category population:

p =+ (or 50%) heads

Population: billions of
coin tosses classified
into those resulting in
heads and those
resulting in tails.

Now, if we were to randomly sample from this population, say for instance,
we sample 12 coin flips, what may we expect to happen? We know from theory
and a long history of experience, that if we were to randomly sample from any
large two-category population,

The sample propertion, B, E
Ds=p will be approximately equal to the
population propertion, B.

*This topic was introduced at the end of chapter 3, section 3.5.
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That is, since the population consists of 50% heads, then a random sample should
consist of approximately 50% heads. In the case of n = 12 coin flips, we should
get approximately 6 heads (50% of 12 = 6). However, we can also get 5 heads
or perhaps even 9 heads. How can we determine the percentage of times we can
expect each of these outcomes to occur?

One way is to actually perform this experiment a great many times, as
follows.

12 coins dropped  Say we drop n = 12 coins on a table
mangf[};ﬁf::n ds thousands and thousands of times and
record the number of heads achieved on
N, e each drop, we would get something like
0123456789101112 the histogram shown here,

Number of heads
achieved

This is called a sampling distribution, defined as follows:

In fact, the above sampling distribution shows us what we can expect when
we randomly select n = 12 values repeatedly from a large two-category popu-
lation described by p = % (or 50%) heads.

These results can be summarized with the following diagrams:

Population: billicns of
coin tosses classified as
heads or tails

p= + {or 50%) heads

Sampling distribution:
/ the result of thousands and
thousands of random samples
of size n = 12 drawn from
this huge two-category
population

01234567 89101112

Number of heads
achieved
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Notice that this particular sampling distribution (the histogram) is sym-
metrical around the value we would most likely expect to occur. In the case of
dropping n = 12 coins, we would most likely expect 50% heads or 6 heads. And
indeed, in this instance, we do most often get 6 heads. This is called the expected
value and can be calculated as follows.*

" Epecied valie = 70

Since our sample size is n = 12, and the population propottion is p = 7

heads,

i

Expected value = np
(12)(1/2 heads)

= 6 heads

Although we indeed most often get 6 heads, on a greal many occasions we get
somewhat more than 6 heads, and on a great many occasions somewhat less, with
the heights of the histogram bars falling off in a shape strongly resembling that
of a normal distribution.

Actually, this should not come as a surprise, since the initial discovery of
the normal curve evolved from these same early coin experiments; recall De
Moivre’s and Laplace’s work discussed at the beginning of this chapter.

In fact, these bell-shaped sampling distributions appear repeatedly in gam-
bling experiments when n is large. For instance, the following:

50 coins drepped
many thousands
of times

Suppose we drop n = 50 coins on a table
thousands and thousands of times and
record the number of heads achieved on

each drop, we would get a distribution
20 25 30 something like this.

Number of heads
achieved

*Fxpected value was defined in section 3.6 using the general formula, expected value
= Zxp(x). It can be shown for binomial experiments such as these, after algebraic
manipulation, expecied value = np.
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Notice the sampling distribution is again symmetrical around the vatue we
would most likely expect, which is 25 heads (since the population consists of -
heads, then any random sample should consist of approximately 5 heads; 3 of
50 = 25). Again, this may be calculated as follows:

Expected value = np
(50)(1/2 heads)
= 25 heads

And indeed we do most often get 25 heads (see histogram above); however,
on a great many occasions we get somewhat more than 25 heads and on a great
many occasions somewhat less, with the heights of the histogram bars again
falling off in a shape resembling that of a normal distribution.

Okay, you might ask, this may happen with coin tosses, where the proba-
bility of a head for a coin toss is + (50%), but what if we sampled a different
population, say die tosses, where the probability of a particular face turning up
is L (163%). What happens then?

Well, let’s take 60 dice and paint one face on each blue (for identification
purposes).

60 Dice
Y —
T i ST
One
blue face - o
S ne
I(J)II:; ['/_‘ blue face L
Tl cn back

face

60 dice dropped  Syuppose we drop n = 60 dice on a

many thousands

of Gimes table thousands and thousands of
times, and each time record the

number of blue faces that turn up. If

we tally the results into a histogram,

5 10 15 . we would get a distribution something

Nurmber of blue faces like this.
achieved
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For a clearer picture of this, let’s summarize the results with the following
diagram.

Population: billions of die tosses

classified as tosses with blue face
turned up and tosses with no blue
face turned up.

p= + (or 165%) blue faces

/ Sampling distribution:

the result of thousands and
thousands of random
samples of size n = 60 drawn
from this huge population

.5 106 15 ...
Number of blue faces
achieved

Notice the shape of the sampling distribution (the histogram). It is sym-
metrical around the value we would most likely expect, in this case 10 blue faces.
In other words, since the population consists of 4 blue faces, any random sample
should consist of approximately + blue faces (note: + of 60 = 10). Again, this
expected value can be caiculated as follows.

it

Expected value = np
(60)(1/6 blue faces)

10 blue faces

And indeed 10 blue faces is our most frequently occurring value. However,
on many occasions we get somewhat more than 10 blue faces and on many
occasions somewhat less, again with the heights of the histogram bars falling off
in a shape approximating that of a normal distribution.

Normal Curve Approximation to the
Binomial Sampling Distribution
These bell-shaped sampling distributions kept occurring with amazing regularity

in coin and dice experiments when », the number of coins or dice dropped was
sufficiently large. Of course, at this point you might ask, how large must » be to
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be considered ‘‘sufficiently large™? Large enough, so when multiplied by p or
(1 — p), the result exceeds 5---which leads us to the following important rule.

Does this imply that if np or 7(1 — p) is 5 or less, the normal curve cannot
be used to estimate probabilities? Yes, for ap or n(1 — p) of 5 or less, the sampling
distribution is often skewed or sloping and generally the normal curve cannot be
depended on to give reliable estimates. For these special cases, other techniques
are available, which are discussed in chapter 11.

For the remainder of this chapter, we will demonstrate only those situations
where the sampling distribution can be approximated with the normal curve,
namely when

Expected value (np) > 5 and nr(l —p) > 5

Let’s see how this works in an example.

Out of 12 tosses of a coin, find the probability of achieving exactly 6 heads.

Since the expected value (np) = (12)(3) = 6, which is greater than 5, and
n(l — p) = (12)(1 — $) = 6, which is greater than 5, we now know repeated
samples of n = 12 will produce a sampling distribution approximately normally
distributed such that a normal curve with mean and standard deviation as follows
can be used to estimate probabilities,

np U=m

U = expected value

= 12(1/2) = J12(1/2)(1/2)
= 6 heads =173

Now, to answer the question, what is the probability that out of 12 tosses we will
achieve exactly 6 heads, we proceed as follows.
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Population, p = + heads

Binomial sampling
, distribution

| forn=12

' coin tosses

6t’ § 9101112
Number of heads

55 65

First, we shade the histogram bar
representing exactly 6 heads. Note the
shading must extend from 5.5 to 6.5
to include the entire width of the
histegram bar representing 6 heads.

This +-unit adjustment (referred to as
a continuity correction factor) is
necessary when the normal curve is
used to estimate probabilities in the
binomial sampling distribution. The
term continuity correction factor is
further defined at the end of the
example. Now fit a normal curve over
the histogram to estimate
probabilities.

Population, p =  heads

22.82%
(final answer)

11.41% L 11.41%
6 Number of heads
¢ z score

x=55 x=635

z=-29 z=+.29

Resketch normal curve (for clarity)
and shade area from 5.5 to 6.5. Using
L= &and ¢ = 1.73, we solve as we
would any normal curve problem by
first calculating the z score at the
cutoffs.

_x-W _55-6_ -5
5 173 173

—.29

The percentage of data from z = 0 to
z = —.2915 11.41%. Since there is an
equal amount of data from z = 0 to z
= +.29, we add 11.41%

+ 11.41% to get 22.82%.

Now we can say that the probability of achieving exactly 6 heads out of 12 tosses
i8 22.82%. Visually, this can be represented as follows:

) FP{exactly 6 heads) = 22.82%

Binomial sampling distribution
for n = 12 coin tosses

T T T T ¥ H
01234567 89101112
Number of heads achieved

LR B MO TN MR R
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Terminology

This is necessary since it is the area occupied by the histogram bar that represents
the probability that event will occur. So, remember, when using the normal curve
to estimate binomial probabilities, we must shade the entire histogram bar(s) in
guestion to get all the probability.

The binomial sampling distribution is sometimes referred to as a discrete
data distribution, meaning the distribution contains only discrete values.

Note in the histogram above, the data is classified only into values such as 0
heads, 1 head, 2 heads, 3 heads, etc. In other words, if 12 coins were dropped,
you could never achieve 3+ or 54 heads. When data can assume only isolated
point values, such as in this case whole-number values, it is referred to as discrete.

Binomial Sampling Distribution: Applications

Two-category Of course, at this point, you may very well say, who cares about this; these are
population gambling experiments and I'm interested in business, psychology, medicine, ed-
L ucation, or whatever.
Binomial s . . . L . .
distribution Well, let’s say, these binomial sampling distributions will form no matter

what field of endeavor you apply them to, research in business, psychology,
medicine, education, or whatever, provided you conform to the fundamental as-
sumptions of binomial sampling, as follows.

Two-category
population

*Independent means: whether or not we achieve a success on one selection in no way
affects the probability of achieving a success on any other selection.
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Binomial sampling can be used in a wide variety of contemporary apphi-
cations, provided we conform to these fundamental conditions. These conditions
are necessary to conform to the basic fundamentals that are innate to coin, dice,
and other gambling experiments, on which the theory and mathematics is based.

Although we must evaluate every contemporary experiment on the above
formal terms, in actual practice these conditions can often be satisfied by simply

Let’s see how all this applies to a contemporary experiment.

Example —————— From many thousands of users of a new experimental ’_drl-ig_ designed to cure a
specific form of bladder inflammation, it was found that 60% were cured.

Suppose we randomly select n = 15 individuals from this large two-
category population, what percentage O

would we find 12 or more cured?

f the time (or with what probability)

ment: there are 15 fixed selections from

Solution Notice this is a binomial sampling experi
a two-category population, each independent and each having the same proba-

bility a cured individual (a success) will be chosen. Random selection from a
large two-category population generally
satisfies these conditions. Furthermore,

Poputation: many thousands of since expected value (np) = (15)(.60) =
users of a new experimental drug 9 and n(l — p) = (15)(.40) = 6, and both
are greater than 5, the resulting binomial

p = 60% cured sampling distribution will be approxi-
mately normally distributed with mean

Binomial sampling distribution:  and standard deviation calculated as

the result of " _
many thousands of ollows:

d 1
15 doswn n=np 6 = Jnp(l — p)
J15(.60)1 — .60)

from this = 15(.60) =

population =0 = J15(.60){.40)
= 1.8%7
= 1.90

P NZlmbjr le;d B Now a normal curve with these dimen-
sions {1 = 9, 6 = 1.90) can be fitted over
the histogram to estimate probabilities in
any portiot.

#All sampling in this text assumes both internal and external validity, as discussed in

section 1.1.
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S0, to angwer our question, out of n = 15 randomly selected individuals
what percentage of the time would we find 12 or more cured, we proceed as
follows,

Binormial
sampiing distribution

. Ni
for n = 15 selections ormal curve

fitted over
histograrm

9.34%
(50% — 40.66%)

Nuomber
Note: 11,5 U4 x=115
z=1.32
First, we shade the histogram bars Second, we resketch the normal curve
representing 12 and above. Note the and shade the area 11.5 and above.

shading must extend to 11.5 to Using L = 9 and 6 = 1.90, we solve
include the entire bar representing 12 as we would solve any normal curve

cured. This half-unit adjustment is problem by first calculating the z
called your continuity correction score at the cutoff.
Sactor. Now, we fit a normal curve

over the histogram. R Sl 1Li—-9 25
G 1.90 1.90

=132

The percentage of data from z = 0 1o
z = 1.32 is 40.66%. Subtract this
from 50% to get 9.34%.

Now we can say, 9.34% of the time we will achieve 12 or more cured when we
randomly sample 15 from our population, and this can visually be represented
as follows: - :

Binomial sampling distsibution
for n = 15 selections

P (12 or more cured)
=95.34% (answer)

LMY AR A B B N B B |

3 5 7 9 1F 13 15
Numther cured out of 15
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Impartance of random selection

Importance of a large population

Let’s summarize: since the population consists of 60% cured, any random
sample will most likely consist of approximately 60% cured (60% of 15 = 9);
thus, in this case, approximately 9 cured would be expected. Achieving 12 or
more cured out of a sample of 15 is not very likely; in fact, this occurs only
9.34% of the time. ‘ =

It is important when we conduct a binomial sampling experiment that we
maintain the conditions of independence and a constant probability of success
from selection to selection. Random selection from a large population allows for
this.

Note if selection in the above medical experiment were not random: let’s
say we used only members of the same family for our sample of 15. Family
members may very well have similar genetic reactions to a drug. In this case, it
would not be unlikely to get 100% of the sample, or even 0% of the sample cured.
Generally, nonrandom samples violate the prime conditions for binomial sam-
pling, and will usually destroy our ability to predict probabilities. With random
selection we can be assured of maintaining a constant probability of a success
from selection to selection, and thus obtain a true representation of the
population,

Second, if selection had been from a small population (under 20 times the
size of your sample), this would violate our condition of independence. For in-
stance, let’s say our entire population in the medical experiment were not many
thousands but instead merely 30 individuals, of which 18 were cured {(60%). Now,
if we were to randomly sample 15 from this very small population, how many
cured individuals we selected, let’s say, on the first few picks would greatly affect
the probabilities associated with later picks.

Actually, sampling from small populations can be dealt with using other
statistical tools, but not the binomial.

Remember, random selection from a large population allows us to maintain
the conditions of the early coin and dice experiments, namely independence and
a constant probability of success from seleciion to selection. Serious violation of
these conditions can render your results valueless (and remember, for all sam-
pling in this text, we assume internal and external validity has been assured, as
discussed in chapter 1).

One more point before we continue. Keep in mind, the normal curve gives
an approximation. The histogram bars are wide and the normal curve may fit
well, but the fit is not perfect. For instance, the precise answer to the above
problem is 9.05%. Our answer is 9.34%. Most would consider this quite close.
Generally, for larger values of np and n(1 — p) (for instance, when both »ap and
n(l — p) exceed 14) the normal curve approximation for most purposes is almost
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exact. Of course, this leaves somewhat of a gap for ap and r(l — p) between 5
and 14 in which we must exercise some professional judgment in evaluating
probabilities. As a general rule, for np or n(1 — p) between 5 and 14, the prob-
abilities in the broad central region of the normal curve are considered reasonably
accurate, while probabilities in the ‘‘very extreme’’ tails might best be verified
with other methods. Other methods are available to get more precise answers,
however these metheds can be quite tedious to implement (again, more is dis-
cussed on these special cases in chapter 11}. Now let’s try another example.

This next example is presented not only for practice but to demonstrate that
the approximating normal curve may peak at a value of L that is not a whole
number, even though the data in the binomial histogram is classified into discrete
whole-number categories.

Example ——————— Out of millions of assemnbly-line batteries produced last month by a large man-
ufacturer, 6% were known to be defective.
Out of 170 randomly selected batteries from this pepulation, find the prob-
ability that 14 or less of these will be defective.

Solution This is binomial sampling since there are 170 fixed selections, each independent
and each having the same 6% probability that a defective battery {(a success) will
be chosen. Random selection from a large two-category population generally
satisfies the conditions for binomial sampling.

Since expected value (np) = (170){.06} =
Population; millions 10.2 and n(1 — p) = (170)(.94) = 159.8, and
of batteries . L
both are greater than 5, the sampling distribu-
tion will be approximately normally distributed

with mean and standard deviation calculated as
Binomial sampling follows:
distribution for n = 170

p=.06(6%)
defective

selections u=np G = ’np(l —_ P)
= 170(.06) = J170(.06)(.94)
= 0.2 = 3096

= 3.1 {rounded)

Note that the histogram shown is not quite sym-
metrical about any particular central value, thus
the peak of the approximating normal curve will
probably not be a whole number, In this case,the
approximating normal curve peaks at o = 10.2, which is not a whole number,
So, to answer the question, what is the probability that out of our sample of 170
we will find 14 or less defective, we proceed as follows,

TF T

6 8 0 12 14, .,
Number defective
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Answer

Normal Distribution

p = .06 (6%) defective

N

Population

Binomial
sampling distribution
for n = 170 selections

T 1 1 T 1 T T T 1 T T3 7

6 3 10 12 14 ..
Note: 14.5

Number defective

First, we shade the histogram bars
representing 14 or less. Note the
shading must extend to 14.5 to
include the entire bar representing 14
defective. This half-unit adjustment is
called your continuity correction
factor. Now we fit a normal curve
over the histogram.

Population p =06 (6%) defective

Normal curve
fitted over histogram

Number defective

r=145 Z §COre

z=139

Second, we resketch the normal curve
and shade the area 14.5 and below.
Using B = 10.2 and ¢ = 3.1, we
solve as we would any normal curve
problem by first calculating-the z
score at the cutoff. Iﬁ/" J

x— 4 145-102 /43
c 3. 31 139
The % of data from z = ( to z = 1.39
is 41.77%. Add this to 50% to get
91.77% (answer). '

Now we can say, 91.77% of the time (or with probability .9177) we will achieve
14 or less defective batteries when we randomly sample 170 from our population,
and this can be visually represented as follows:

Population: millions

of batteries
p= :06 {6%) defective

P (14 or less defective)
=91.77% (answer)

Rinomial sampling distribution
for n = 170 selections

6 g 10 12 14
Number defective
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Note that the normal curve is merely a tool, a device we use to lay over the
histogram to help us determine the percentage of data in some portion of the

histogram. In these binomial sampling experiments, there can never be, in reality,

10.2 defective batteries or 14.5 defective batteries. You can get 10 or 11 or 13
or 15 or any whole number of defective batteries but never 10.2 or 14.5. These
numbers are location points on our estimating device, the normal curve,

One meore point concerning this problem: Say we were employed as a
Quality Control manager on the assembly line that produces these batteries and
from a month’s production we randomly sampled » = 170 and found 22 defective
batteries, what would you conclude? Look at the histogram.

Population: millions

of batteries
\ p = .06 (6%) defective

Binomial sampling distribution
for » = 170 selections

6 8 10 12 14
Number defective

Certainly, if the population proportion were indeed p = 6% defective, then
22 defective batteries out of our sample of 1 = 170 would be an extremely rare
event—in fact, nearly impossible. You can tell this just by looking at the histo-
gram. The question is: did this extremely rare event occur or is the manufacturing
process malfunctioning? In other words, is production out of control and no
longer holding down the defective rate to p = 6%? Certainly, a prudent quality
control manager would investigate and would do so immediately before the pro-
cess possibly degenerates further. &

One last point concerning np > 5 and n(1 — p) > 5 in a binomial sampling
experiment:
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For example, in our battery experiment with n = 170 selections, we calculated
np = 10.2 and n(l ~ p) = 159.8. That is,

Expected Successes +  Expected Failures = Total Selections
(10.2 defective batteries) + (159.8 okay batteries) = 170 selections

So, instead of saying sp and n(l — p) must each exceed 5 for the sampling
distribution to be approximately normally distributed, we can say expected
number of successes and expected number of failures must each exceed 5 for the
sampling distribution to be approximately normally distributed, and the sum of
these two numbers equals #, the total selections.

Summary

Perhaps the single most important distribution in all ~ standard deviation of the mean, whereas

of statistics is the bell-shaped or normal distribution. approximately 95% of the data lies within 2
The distribution was discovered seemingly under standard deviations of the mean.

different circumstances by De Moivre (1733),
Laplace {1781), and Gauss (1809} and encountered
so frequently in experiments that sometime in the
mid-to-late 1800s it adopted the name, normal.

Normal curve table: This table offers the
percentage of data in the normal curve between

z = 0 (the position of L) and any z score you look
up. Recall, a z score is the number of standard

Characteristics of the normal distribution: deviations a value is away from the mean. To
Bell-shaped, fading at tails; symmetrical about 1, precisely calculate the z score of a value, x, we
the mean, with 30% of the data in each half. use the formula
Approximately 68% of the data lies within %I z = o

(&)
Normal Curve Table Usage

To Find Area, A We Use the Following Procedure

A, the area between 0 and z can be found directly in
the normal curve tables.

A =
0
= 50% - {area between (0 and z}
A =
O,K. ;2
= (area 0to z,) — (area O toz)}
A =
21”0
= (area O to zy) + {arca 0to z;)




Working backward: The normal curve table
can also be used in reverse. If we know the per-
centage of data between ) and z, we look up this
area (in decimal form} in the table and determine
the closest z value. If the percentage of data falls
precisely midway between two values, we round
to the higher z score.

Sampling from a Two-Category Population

Two-category population: A two-category
population is a population where every member is
classified into exactly one of two categories.

Sampling distribution: A sampling distribution
shows us what we can expect when we randomliy
select  values (a fixed number) repeatedly from a
particular population.

Binomial sampling distribution: The resulting
sampling distribution when we randomly select
values repeatedly from a large two-category
population, where each selection is independent
and each has the same probability, p, a success
will be chosen.

Large-n binomial sampling: For np and
n{l — p) greater than 5, the binomial sampling
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distribution can be approximated with a normal
curve with the following dimensions:

R = np

6 = /np(l — p}
Continuity correction: This refers to the +-unit
shading adjustment(s) necessary to include the
entire width of the histogram bar(s) in question.

Discrete values: The binomial sampling
distribution is sometimes referred to as a discrete
data distribution, discrete, meaning values that
when presented on a number line occupy only
distinet unconnected (or isolated) points, However
to assess probabilities we represent these discrete
values with histogram bars, where the area of a
histogram bar at some value represents the
probability of achieving that value.

Small-n binomial sampling: For np or

n(l - py of 5 or less, the binomial sampling
distribution is often skewed or sloping and the
normal curve cannot be depended on to give
proper estimates. For these cases, other techniques
can be employed that are discussed in chapter 11,
section 11.1.

Note that full answers for exercises 1-5 and
abbreviated answers for odd-numbered exercises
thereafter are provided in the Answer Key.

4.4

a. It was widely believed in the mid-1800s that
given enough observations all natural phenomena,
such as, heights, weights, reaction times, etc.,
from any common grouping will take on the shape
of a normal distribution. Is this so? Explain.

b. In the construction of the idealized normal curve,
three primary assumptions were presented. List
each and explain.

¢. The idealized normal curve has a number of

characteristics. List four characteristics.

4.2 Use the normal curve table to determine the
percentage of data in the normal curve

a. between z = 0 and z = .82,

b. above z = 1.15.

c. between z = —1.09 and z = .47.
d. between z = 1.53 and z = 2.78.

Work backward in the normal curve table to solve
the following:

e. 329% of the data in the normal curve can be found
betweenz = Qandz = ?

f. Find the z score associated with the lower 5% of
the data.

g. Find the z scores associated with the middle 98%
of the data.
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4.3 Suppose the heights of all female students at
“University of Maryland in College Park are known to
be normally distributed with @ = 5’5" and ¢ = 2",

find the percentage of female students

a. under 5'2'".
b. between 5'24"' and 5'8"".
¢. between 5'81'" and 594",

4.4 [Ebbinghaus in 1885, in a landinark experiment
in Experimental Psychology, repeatedly measured the
time necessary for an individual to memorize equal
blocks of nonsense syllables (such as, zid, cuk, xot)
and found the times to be normally distributed.
Using Ebbinghaus’s data, suppose this
individual takes an average of @ = 21.0 minutes to
complete the task of memorizing a block of nonsense
syllables with standard deviation, 6 = 1.2 minutes.

a. Below what value would you expect to find the
fastest 10% of the times? (Note: the fasrest times
would be less than 21.0 minutes, thus we shade
the extreme left of the normal curve, estimating
10%.)

b. Between what values would you expect to find the
middle 50% of the times?

4.5 Selecting random samples of the same size
repeatedly from a large two-category population
creates a sampling distribution, known as 2 binomial
sampling distribution, which is approximately
normally distributed for expected value (np) > 5 and
n(l — p) > 5. Use this information to answer the
following.

a. In a population of many thousands of users of a
new experimental drug designed to cure a specific
form of bladder inflaznmation, it was found that
60% were cured. Suppose we randomly select 15
users from this population, what is the probability
we will find 7 or less cured?

b. Can we apply this population proportion (p = 60%
cured) to future users, say in the case where the
drug is to be distributed in another country? That
is, can we expect about 60% cured? Discuss
briefly.

___:-‘%';7 Use the normal curve table to determine the

4.6 Use the normal curve table to determine the
percentage of data in the normal curve

a. between 1 standard deviation.
b. between £2 standard deviations.
¢. between 3 standard deviations.

percentage of data in the normal curve

. between z = 0 and z = .38.

. above z = —1.435.

. above z = 1.45.

. between z = .77 and z = 1.92.

. between z = —.25 and z = 2.27.

f. between z = —1.63 and z = —2.89.

m e TR

Work backward in the normal curve table to solve
the following.

g. 15% of the data in the normal curve carn be found
between z = 0 and z = ?

h. Find the z score associated with the upper 73.57%
of the data.

i. Find the z scores associated with the middle 95%
of the data.

4.8 Suppose standard IQ scores are known (o be
normally distributed with y = 100 and 6 = 15. Find
the percentage of individuals with IQ scores

a. above 125.

b. above 90.

¢, between 62 and 72.
d. below 88.

Work backward in the normal curve table to solve
the following.

¢. Above what value would you expect to find the
upper 30% of 1Q scores?

f. Between what values would you expect to find the
middle 75% of 1Q scores?

4.9 Biological characteristics of a species are
sometimes found to be near normally distributed.
Suppose American anchovies, Engraulis
encrasicholus, a species of herring commonly used
on pizza, is known to have lengths that are normally
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distributed with g = 10.2 centimeters (about 4’') and
o = .08 centimeters (cm). Find the percentage of
anchovies with lengths

a. below 9.0 cm.

b. below 10.7 cm.

¢. between 9.5 cm and 10.8 cm.
d. between 11.0 cm and 11.4 cm.

Work backward in the normal curve table to solve
the following.

e. Above what length would you expect to find the
longest 15% of anchovies?

f. Between what lengths would you expect to find
the middle 99% of anchovies?

4.0 Human characteristics are sometimes found to
be near normally distributed. Quetelet in 1846 was
probably the first to demonstrate this using the chest
measurements of Scottish soldiers. He found the
chest measurements to be normally distributed with
% = 39.5" and o = 2.5, Find the probability of
randomly selecting a measurement

a. between 36.5'" and 38.5"".

b. above 38.2",

¢. between 39.2"" and 40.6"".

d. between 39.5"" and 44.7"'.

e. Below what value would you expect to find the
smallest 40% of the chest measurementis?

f. Between what values would you expect to find the
middle 96% of the chest measurements?

+#4.%11 QGalton demonstrated that large normal
* populations may, in fact, be comprised of several
smaller normal populations. In 1875 he separated
sweet pea seeds from the same parent by weight into
several groups. Each group produced sweet peas with
normally distributed weights but around different
averages. When combined, these several smaller
normal distributicns formed into one large normal
distribution centered around one common average.
Suppose the weights of a number of subspecies
of Granny Smith apple combine to form one large
normally distributed population of Granny Smith
apple with i = 6.9 ounces (oz) and ¢ = 1.1 oz.
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a. What percentage of Granny Smith apples weigh
more than 8.5 0z?

b. What percentage of apples weigh between 7.2 oz
and 8.0 oz?

¢. If you randomly select a Granny Smith apple,
what is the probability the apple weighs less than
7.0 oz?

d. Above what weight would you find the heaviest
65% of the apples?

e. Between what weights would you find the middie
84% of the apples?

4.12 A binomial experiment is formally defined as
a fixed number of trials (or selections), each
independent and each having the same probability for
success. Show how these conditions are met and
solve the following.

a. Qut of 20 tosses of a coin, what is the probability
of getting 13 to 15 heads?

b. Out of n = 50 die tosses (one face of die is
painted blue), what is the probability of turning up
10 or more blue faces?

4.%3 The U.S. Military Academy at West Point is
one of the nation’s most selective colleges, accepting
11%* of applicants (according to the Insider’s Guide
to the Colleges). Out of # = 60 randomly selected
applicants to the U.S. Military Academy,

a. how many would you expecr to be accepted?

b. what is the probability 8 or less will be accepted?

¢. what is the probability between 5 and 7 will be
accepted?

d. what is the probability exactly 6 will be accepted?

4.14 67% of Americans feel secret files are being
kept on them (based on data from The Harper's
Index). Out of 25 randomly selected Americans, what
is the probability 18 or more will feel secret files are
being kept on them?

4.%5 75% of those working in the visual, literary,
or performing arts earn low wages from their art,

under twelve thousand dollars per annum, based on
data from Columbia’s Research Center for Arts and

*Harvard accepts 15%.
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Culture (Columbia Magazine, Summer 1990, p. 14),
Out of 30 randomly selected artists,

a. how many would you expect to eam low wages?

b. what is the probability you will find at least 20
earning low wages?

¢. what is the probability you will find 24 to 27
earning low wages?

4.16 In a marketing population of phone calls, 3%
produced a sale. If this population proportion (p =
3%) can be appiied to future phone calls, then out of
500 randomly monitored phone calls,

b. find the probability you will get 18 or less that
exhibit bizarre social behavior.

¢. How valid is our assumption that p = 23% can be
assigned to all mice? Discuss briefly.

4.18 B88% of American high school students agree
with their parents on the value of an education
(according to studies from the University of
Michigan, Institute for Social Research, *“Monitoring
the Future’”).* Out of » = 45 randomly selected
American high school students,

a. find the probability that 35 or more will agree

a. how many would you expect to produce a sale?
b. what is the probability of getting 11 to 14 sales?
¢. what is the probability of getting 12 or less sales?

4.17 In a study on aggression, 23% of mice
exposed to severe conditions of overcrowding
resorted to bizarre social behavior, such as
cannibalism. If this is representative of all mice, out

of a randomly selected group of # = 100 mice

exposed to these severe conditions,

a. find the probability you will get from 20 to 25 that

exhibit bizarre social behavior.

Endnotes

with their parents on the value of an education.

b. find the probability that 41 to 44 will agree with
their parents on the value of an education.

¢. If we were to randomly sample n = 45 American
high school students ten years from now, ¢an we
expect about 88% of the sample to agree with
their parents on the value of an education?
Discuss hriefly.

*The same studies also revealed only 47% agreed with

their parents on what’s permitted on a date.

1. De Moivre, although born in France, was
obliged to move to England as a young man
under the Bdict of Nantes (which restricted
religious and civil liberties tc¢ Huguenots),
and in England De Moivre worked as a math-
ematics tutor and consuitant for wealthy
patrons.

2. Actually Dre Moivre simulated the number
of heads expected when n coins are dropped
by using the expansion of {1 <+ 1)". One can
also use the coefficients of the expansion
(a + by

3. De Moeivre did not use the term, standard
deviation. In fact, technically the concept of
standard deviation was not to be fully recog-
nized for at least another seven decades, until
after Legendre’s work on least squares (1803)
in which he demonstrated Z (x — pY* was min=
imum abeut the mean (refer to chapter 9, sec-
tion 9.0, under ‘‘Least-Squares Analysis®’ for

further reading on this). De Moivre's predict-
able distance was calculated to be "%\/E,
which we now know as the standard deviation
in a binomial experiment when p = %, that

is, 0 = /np(l - p) = nﬁ = %\/f—l In
thislcase, where n = 900, ¢ = % 900
= 5 - 30 = 15, This is further discussed
in section 4.4. De Moivre arrived at
%\/H (actually, % n— 2, which is essen-
tially equal to é—‘/r_t for large n) by deter-
mining the inflection points on the curve.

4. De Moivre’s work at the time went rela-
tively unnoticed and one can only speculate
why. Perhaps the most probable reason is that
mass statistical data was not as yet available,
thus the practical application of De Moivre's
discovery to social phenomenon could not be
readily demonstrated—although De Moivre
and a number of others feit it was only a
matter of time until the laws of probability
would be applied to 2 variety of social issues.

For an insightful discussion on this topic,
refer to S. Stigler, The History of Statistics
(Cambridge: Belknap Press, 1986}, pp. 85—
87.

5. It was unclear whether Laplace was fa-
miliar with De Moivre’s work published 50
years earlier since he never mentionad De
Moivre in his papers and his mathematical ap-
proach was quite different.

6. Laplace used the illustration of black and
white tickets drawn from an urn,

7. At the time, Laplace (like De Moivre) was
unaware of the concept of standard deviation.
Laplace used a rather complex formulation to
arrive at a suitable measure of spread. It was
adequate for his purposes, but like much of
Laplace’s work exceedingly complex.

8. The actual figures were 251,527 males out
of 493,472 births. All figures were scaled to
500,000 births for clarity.




9. The precise percentages were: Paris,
. 50.97% male births; London, 51.35%;
Kingdom of Naples, 51.16% (Stigler, 1986).

10. According to Newsweek (April 16, 1990,
p- 81), current averages worldwide are 50.6%
male births, 49.4% female (102.5 males are
born for every FOD females).

11. Gauss’s reasoning essentially proceeded
as follows: (1) it was generally acknowledged
at the time that the arithmetic mean of several
measurements was the best estimate of plan-
etary position, {2) since the mean is most
probable only if the errors are normally dis-
tributed, according to the method of least
squares, then (3) errors must be normally dis-
tributed. Although one may find fault with
Gauss’s reasoning, the impact was monu-
mental. Laplace seized on the argument
giving it a solid base in logic based on his
work with probability experiments.
Essentially, Laplace reasoned that a single
observation must itself be an aggregate of
more fundamental errors just like the outcome
of 900 coins dropped on a table is the aggre-

gate of many head-tail outcomes. It is sur-
prising Laplace himself had not made the
discovery, considering his intense involve-
ment in both astronomy and probability
theory.

12. Planets such as Jupiter and Saturn were
not used at sea to measure longitude becavse
of their relatively slow movement and other
difficulties of measurement while at sea.
Moon craters were highly visible and the
Moon’s motion relatively fast, offering more
precise measurements,

13. Gauss and ethers in the 1800s used a va-
riety of standard distances from the mean,
however many were multiples of the standard
deviation, such as .675 G, which was referred
to as the probable error, since 50% of the
errors were expected to fall within £.675 6 of
L. In 1893, Pearson coined the term standard
deviation and advocated its universal use.

14. Use of the normal distribution was con-
fined mostly to astronomy for several decades
and, thus, throughout much of the 18003 was
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referred to as Gauss’s law of ermor, Even (o
this day, the normal distzibution is sometimes
called the Gaussian distribution,

15. For further readings in this area, refer to
H. Walker, Studies in the History of Statis-
tical Method (Baltimore: Williams & Wil-
kins, 1929} and Stigler (1986).

16. In his newborn infant study {discussed in
section 4.0), Laplace devised methods for cal-
culating certain probabilities associated with
the binom:al distribution as » — =, which
Kramp in 1799 used to construct a fuil table
of normal curve probabilities.

17. Kramp prepared the tables using 6./2 as
the unit measure of dispersion, referred to as
the modufus. Conteraporary tables use o, the
standard deviation. Shepperd (1902) was the
first to publish a table using o, the standard
deviation, as the unit measure.

18. E. W. Scripture, The New Psychology
(1897}, p. 443, as discussed and footnoted by
Walker {1929), p. 24,




